Содержание материала

Предварительное (опережающее) декодирование
и кэширование

Предсказание ветвлений

В любой более-менее сложной программе присутствуют команды условного перехода: «Если некое условие истинно перейти к исполнению одного участка кода, если нет другого». С точки зрения скорости выполнения кода программы современным процессором, поддерживающим внеочередное исполнение, любая команда условного перехода воистину бич божий. Ведь до тех пор, пока не станет известно, какой участок кода после условного перехода окажется «актуальным» его невозможно начать декодировать и исполнять (см. внеочередное исполнение). Для того чтобы как-то примирить концепцию внеочередного исполнения с командами условного перехода, предназначается специальный блок: блок предсказания ветвлений. Как понятно из его названия, занимается он, по сути, «пророчествами»: пытается предсказать, на какой участок кода укажет команда условного перехода, ещё до того, как она будет исполнена. В соответствии с указаниями «штатного внутриядерного пророка», процессором производятся вполне реальные действия: «напророченный» участок кода загружается в кэш (если он там отсутствует), и даже начинается декодирование и выполнение его команд. Причём среди выполняемых команд также могут содержаться инструкции условного перехода, и их результаты тоже предсказываются, что порождает целую цепочку из пока не проверенных предсказаний! Разумеется, если блок предсказания ветвлений ошибся, вся проделанная в соответствии с его предсказаниями работа просто аннулируется.

На самом деле, алгоритмы, по которым работает блок предсказания ветвлений, вовсе не являются шедеврами искусственного интеллекта. Преимущественно они просты... и тупы. Ибо чаще всего команда условного перехода встречается в циклах: некий счётчик принимает значение X, и после каждого прохождения цикла значение счётчика уменьшается на единицу. Соответственно, до тех пор, пока значение счётчика больше нуля осуществляется переход на начало цикла, а после того, как он становится равным нулю исполнение продолжается дальше. Блок предсказания ветвлений просто анализирует результат выполнения команды условного перехода, и считает, что если N раз подряд результатом стал переход на определённый адрес то и в N+1 случае будет осуществлён переход туда же. Однако, несмотря на весь примитивизм, данная схема работает просто замечательно: например, в случае, если счётчик принимает значение 100, а «порог срабатывания» предсказателя ветвлений (N) равен двум переходам подряд на один и тот же адрес легко заметить, что 97 переходов из 98 будут предсказаны правильно!

Разумеется, несмотря на достаточно высокую эффективность простых алгоритмов, механизмы предсказания ветвлений в современных CPU всё равно постоянно совершенствуются и усложняются но тут уже речь идёт о борьбе за единицы процентов: например, за то, чтобы повысить эффективность работы блока предсказания ветвлений с 95 процентов до 97, или даже с 97% до 99...

Предвыборка данных

Блок предвыборки данных (Prefetch) очень похож по принципу своего действия на блок предсказания ветвлений с той только разницей, что в данном случае речь идёт не о коде, а о данных. Общий принцип действия такой же: если встроенная схема анализа доступа к данным в ОЗУ решает, что к некоему участку памяти, ещё не загруженному в кэш, скоро будет осуществлён доступ она даёт команду на загрузку данного участка памяти в кэш ещё до того, как он понадобится исполняемой программе. «Умно» (результативно) работающий блок предвыборки позволяет существенно сократить время доступа к нужным данным, и, соответственно, повысить скорость исполнения программы. К слову: грамотный Prefetch очень хорошо компенсирует высокую латентность подсистемы памяти, подгружая нужные данные в кэш, и тем самым, нивелируя задержки при доступе к ним, если бы они находились не в кэше, а в основном ОЗУ.

Однако, разумеется, в случае ошибки блока предвыборки данных, неизбежны негативные последствия: загружая де-факто «ненужные» данные в кэш, Prefetch вытесняет из него другие (быть может, как раз нужные). Кроме того, за счёт «предвосхищения» операции считывания, создаётся дополнительная нагрузка на контроллер памяти (де-факто, в случае ошибки совершенно бесполезная).

Алгоритмы Prefetch, как и алгоритмы блока предсказания ветвлений, тоже не блещут интеллектуальностью: как правило, данный блок стремится отследить, не считывается ли информация из памяти с определённым «шагом» (по адресам), и на основании этого анализа пытается предсказать, с какого адреса будут считываться данные в процессе дальнейшей работы программы. Впрочем, как и в случае с блоком предсказания ветвлений, простота алгоритма вовсе не означает низкую эффективность: в среднем, блок предвыборки данных чаще «попадает», чем ошибается (и это, как и в предыдущем случае, прежде всего связано с тем, что «массированное» чтение данных из памяти, как правило происходит в процессе исполнения различных циклов).

Заключение

Я тот кролик, который не может начать жевать траву до тех пор, пока
не поймёт во всех деталях, как происходит процесс фотосинтеза!
(изложение личной позиции одним из близких знакомых автора)

Вполне возможно, те чувства, которые у вас возникли после прочтения данной статьи, можно описать примерно следующим образом: «Вместо того чтобы на пальцах объяснить, какой процессор лучше взяли и загрузили мне мозги кучей специфической информации, в которой ещё разбираться и разбираться, и конца-края не видно!» Вполне нормальная реакция: поверьте, мы вас хорошо понимаем. Скажем даже больше (и пусть с головы упадёт корона!): если вы думаете, что мы сами можем ответить на этот простецкий вопрос («какой процессор лучше?») то вы очень сильно заблуждаетесь. Не можем. Для одних задач лучше один, для других другой, а тут ещё цена разная, доступность, симпатии конкретного пользователя к определённым маркам... Не имеет задача однозначного решения. Если бы имела наверняка кто-то бы его нашёл, и стал бы самым знаменитым обозревателем за всю историю независимых тестовых лабораторий.

Хотелось бы подчеркнуть ещё раз: даже полностью усвоив и осмыслив всю информацию, изложенную в данном материале вы по-прежнему не сможете предсказать, какой из двух процессоров будет быстрее в ваших задачах, глядя только на их характеристики. Во-первых потому, что далеко не все характеристики процессоров здесь рассмотрены. Во-вторых потому, что есть и такие параметры CPU, которые в числовом виде могут быть представлены только с очень большой «натяжкой». Так для кого же (и для чего) всё это написано? В основном для тех самых «кроликов», которые непременно желают знать, что происходит внутри тех устройств, которыми они пользуются ежедневно. Зачем? Может, они просто лучше себя чувствуют, когда знают, что вокруг них происходит? :)

 

Добавить комментарий

Не использовать не нормативную лексику.

Просьба писать ваши замечания, наблюдения и все остальное,
что поможет улучшить предоставляемую информацию на этом сайте.

ВСЕ КОММЕНТАРИИ МОДЕРИРУЮТСЯ ВРУЧНУЮ, ТАК ЧТО СПАМИТЬ БЕСПОЛЕЗНО!


Защитный код
Обновить